Κράματα AlZn10Si8Mg

κράμα αλουμινίου

Which Aluminum Alloys are the Best for Die Casting

Αλουμίνιο, χύτευση αλουμινίου, Κράματα AlZn10Si8Mg

Introduction to Die Casting of Aluminum Aluminum alloy die casting is a highly efficient manufacturing process and is used to produce complex metal components at high volume. It is the process of injecting molten aluminum alloy into a hardened steel mold (commonly called a die) at high pressure. The process is particularly appreciated in the automotive, electronics, telecommunications, and industrial equipment industries, as it produces lightweight components with good dimensional accuracy and surface finish. The excellent strength-to-weight ratio is a key reason aluminum is a preferred metal for die casting. The aluminum alloy components may provide the required mechanical performance for the structural application and offer a material with a high level of product weight reduction. There is also die casting, which enables manufacturers to incorporate multiple functions into a single part. Ribs, bosses, mounting points, and thin walls can be cast in a single operation, eliminating the need for secondary machining and assembly. This, in turn, reduces production costs and increases consistency and repeatability. Owing to these merits, aluminum die casting has emerged as one of the most popular metal-forming processes for medium- to high-volume production. The Die Casting Process of Aluminium Mold Preparation and Setup It starts with preparing the steel die. The die is a two-part die casting: a stationary half and a moving half. The die cavity is sprayed and cleaned after every shot. This coating enables control of die temperature and makes the cast solid easy to eject without sticking to the mold surface or being damaged. Molten Aluminum Injection In a furnace, the aluminum alloy is melted and held at a controlled temperature to achieve the proper fluidity. During high-pressure die casting, a specified quantity of molten metal is injected into the die cavity at high pressure by a hydraulic piston. The pressure may range from several thousand to more than 20,000 psi, allowing the metal to fill small areas and complex geometries before solidification. Solidification and Cooling Pressure is kept after filling up the cavity until the aluminum cools and solidifies. The rapid cooling of the steel die yields a fine microstructure that enhances mechanical properties and surface finish. Channel cooling within the die regulates temperature and ensures consistent cycle times. Ejection and Finishing When the die is hardened, the halves open, and the die is ejected from the mold by ejector pins. Any unnecessary material, including runners, gates, and flash, is trimmed. Secondary operations, such as machining, surface treatment, or heat treatment, may then be performed on the part, depending on the application. The result is a near-net-shaped aluminum part suitable for demanding industrial applications. Aluminum Alloys in Die Casting Alloy-based castings: Aluminum die-casting alloys are designed to balance castability, mechanical strength, corrosion resistance, and thermal performance. In contrast to pure aluminum, these alloys have controlled levels of silicon, copper, magnesium, iron, and other alloying elements to enhance liquid flow, solidification, and serviceability of the molten metal. Selecting an appropriate alloy is essential, since each composition offers a unique balance of strength, durability, weight, cost, and manufacturability. This is a closer examination of the most popular high-performance aluminum die-casting alloys and what makes each one suitable for a particular application. A380 Aluminum Alloy Mechanical Performance and Strength A380 has been referred to as the workhorse of aluminum die casting. It has good tensile strength (approximately 320 MPa) and yield strength (approximately 160 MPa) in the as-cast form. Although not the best aluminum alloy on the market, it offers the best combination of strength and ductility for structural housings, covers, and brackets. Advantages A360 Aluminum Alloy Mechanical Performance and Strength A360 offers the same tensile strength as A380 and has improved performance at higher temperatures. The yield strength is typically 170 MPa, and this aluminum alloy is stable under hot-working conditions, such as in engine compartments. Advantages ADC12 (A383 Equivalent) Aluminum Alloy Mechanical Performance and Strength The counterpart of A383 is ADC12, which is of moderate strength, and the tensile strength is commonly 180230 Mpa. Although a bit weaker than the A380, it is still sufficient for the structural performance of numerous industrial and automotive components. Advantages Al-Si11Cu3 Aluminum Alloy Mechanical Performance and Strength The balanced mechanical properties characterize Al-Si11Cu3. Tensile strength is typically above 300 MPa, with good hardness and moderate ductility. It is stronger than ADC12 and is similar to A380 in most structural applications. Advantages B390 Aluminum Alloy Mechanical Performance and Strength B390 has been manufactured to be as hard and wear-resistant as possible. It has an incredibly high yield strength (approximately 240 MPa) and a tensile strength of 350 MPa. It is hard enough, up to 120 Brinell, which is very high by the standards of most die casting alloys. Advantages Comparative Summary The alloys of aluminum die casting are used as follows: The choice of an appropriate alloy is determined by the design factor, which may be strength, corrosion resistance, wear life, weight reduction, or casting complexity. Summary of Physical and Chemical Properties of Aluminum Alloys Alloy A380 A360 ADC12 / A383 Al-Si11Cu3 B390 Silicon % 7.5–9.5 9–10 9.5–11.5 9.6–12 16–18 Copper % 3–4   ≤0.6 2–3 1.5–3.5 4–5 Magnesium % ≤0.1 0.4–0.6 ≤0.3 ≤0.35 ≤0.1 Density (g/cm³) 2.71   2.63 2.70 2.70 2.75 Tensile Strength (MPa) ~324 ~317 180–230 ~300 320–360 Yield Strength (MPa) ~160 ~170 ~150 ~140 240–250 Elongation (%) ~3.5 ~3.5 ~3 ~2–3 <1 Hardness ~80 ~75 ~75 ~85 ~120 Corrosion Resistance Moderate Excellent Fair Moderate Fair Castability Excellent Fair Excellent Very good Moderate Wear Resistance Good Good Moderate Good Excellent Applications of Aluminum Alloys Automotive Industry Lightweight Structural and Powertrain Components Automotive aluminum alloys are widely used in the manufacture of automotive engine blocks, transmission housings, suspension components, and structural brackets. They are powerful per unit weight, reducing the vehicle’s total mass and improving fuel efficiency, thereby increasing the range an electric vehicle can travel. This aluminum alloy also improves heat dissipation in engines and battery systems, enhancing performance and durability. Aerospace Sector Airframe structures and Interior structures The properties that make aluminum

A356 Αλουμίνιο

Μέρη χύτευσης κράματος AlZn10Si8Mg

AlSi9Zn6Mg, AlZn10Si8Mg, Κράματα AlZn10Si8Mg, Κράματα αλουμινίου AlZn10Si8Mg

AlZn10Si8Mg aluminum alloys & AlZn10Si8Mg alloy casting parts We are a professional die casting company in China, we have produced many die casting parts in AlZn10Si8Mg alloys, if you are looking for aluminum die casting parts in AlZn10Si8Mg alloys, we will be one of your best partners, we do not only produce die casting products in AlZn10Si8Mg alloys, but also may type of aluminum alloys, zinc, and magnesium die castings, contact us to get price. The thermal treatment of die casting products still represents the best option for the manufacture of die casting parts with high mechanical strength. However, the manufacture of alloy materials suitable for thermal treatment requires special casting measures. AlZn10Si8Mg alloys presented here offer designers specific advantages. In particular, the AlZn10Si8Mg alloys have a very high 0.2% yield strength. It has been widely used in aviation, aerospace, automotive, machinery manufacturing, marine and chemical industries. With the rapid development of the industrial economy, the demand for aluminum AlZn10Si8Mg alloy welded structural parts is increasing, and the research on the weldability of aluminum alloys is also deepened. AlZn10Si8Mg alloys have excellent corrosion resistance and are well suited for welding. The high shrinkage of AlZn10Si8Mg alloy in comparison with aluminium – silicone alloys must be taken into account when designing die cast molds. The requirements for the die casting parts, particularly in consideration of the intended use and the technical feasibility in the casting factory, determine which of the presented alloys should be selected. As a high pressure die casting manufacturer must focus not only on fulfilling the customer specifications but also the increased customer profits. This includes practical customer advising on site and active identification of customer’s need. We will fully follow our customer requirement on the alloy material selection, or we will recommend a suitable aluminum alloy base on the customers specification, 100% satisfy our customer is our task, The die casting alloy products includes the primary aluminium die casting, zinc die casting, magnesium die casting, and sand casting, gravity die casting as well as a number of low pressure die casting. In the production of alloy vehicle components, industrial parts, The main alloy for use in die casting is AlZn10Si8Mg alloys. AlZn10Si8Mg alloys are self-hardening with these alloy types, the mechanical properties are achieved after storage of approximately 7 to 10 days at room temperature. The die casting alloy AlZn10Si8Mg achieves high values for tensile strength and offset yield stress, however, the low ductility limits the application range of the alloy. In one test series, reduction of the zinc content to Approximate 6 per cent by weight of the AlSi9Zn6Mg achieved a significant increase in the ductile yield. The Chemical composition of these alloy is shown in Table below Alloy Si Fe Cu Mn Mg Zn Ti Sr AlZn10Si8Mg 8.5-9.3 0.4 0.01 0.3 0.3-0.5 9.0-10.0 0.10 — AlSi9Zn6Mg 8.5-9.3 0.2 0.01 0.3 0.3-0.5 6.0-6.7 0.05 0.02 Above the table is Chemical composition of AlZn10Si8Mg alloys & AlSi9Zn6Mg alloys Below Table shows an overview of the achievable mechanical values between AlZn10Si8Mg & AlSi9Zn6Mg. Alloy [Condition] 0,2%-Offset Yield Stress RP0.2 [MPa] Tensile Strength RM [MPa] Ductile Yield A5 [%] AlZn10Si8Mg 230-280 300-350 2-4 AlSi9Zn6Mg 160-210 280-330 5-9  

Κύλιση στην κορυφή

Αποκτήστε μια προσφορά