고압 다이 캐스팅
다이캐스팅 알루미늄, 다이캐스팅 회사, 고압 다이캐스팅, 압력 다이캐스팅금속 주조는 현대 제조업에서 매우 중요한 역할을 합니다. 기술적으로 전 세계를 형성하고 있습니다. 아시다시피 이 방법으로 다양한 금속 부품을 만들 수 있습니다. 고압 다이캐스팅은 가장 널리 사용되는 금속 주조 방법 중 하나입니다. 일반적인 금속 주조 방법은 용융 금속을 금형에 부어 복잡하고 정밀한 모양을 만듭니다. 모든 산업에서 다양한 용도로 이러한 주조 부품을 필요로 합니다. 구조적 지지대나 주요 제품에 필요할 수도 있습니다. 금속을 성형하는 가장 일반적인 방법 중 하나는 다이캐스팅이며, 고압 다이캐스팅은 가장 일반적인 다이캐스팅 방법 중 하나입니다. 이 글에서는 이 방법을 주로 다룹니다. 다이캐스팅이 어떻게 만들어지는지, 어떤 이점이 있는지, 어떻게 사용할 수 있는지에 대해 알아봅니다. 또한 HPDC와 LPDC가 어떻게 다른지도 알아볼 수 있습니다. 고압 다이캐스팅(HPDC) 개요 HPDC는 고압 다이캐스팅의 약자입니다. 이름에서 알 수 있듯이 이 금속 주조 방식은 고압이 필요합니다. HPDC 주조는 공차가 큰 많은 금속 부품을 만드는 데 적합합니다. HPDC 다이캐스팅에서는 용융 금속을 고속과 고압으로 강철 금형 또는 다이에 주입합니다. 따라서 짧은 시간에 수백 개의 주조 부품을 만들 수 있습니다. 이때 필요한 압력은 용융 금속이 다이의 세부적인 특징을 채우도록 하는 것입니다. 이 때문에 고압 다이캐스팅은 대량 생산에 적합합니다. 고압 다이캐스팅 기계는 몇 가지 주요 구성 요소로 이루어져 있습니다. 이들 모두는 시스템에 매우 중요합니다. 다른 부품도 있을 수 있습니다. 그러나 이 네 가지 부품은 고압 다이캐스팅 공정에서 가장 중요한 부품입니다. 이들은 일반적으로 주조 부품의 품질을 최종적으로 결정합니다. 다이캐스트 금형 다이캐스트 금형 또는 다이는 일반적으로 최종 모양을 결정하는 고압 다이캐스팅 기계 부품입니다. 고정식과 이동식의 두 가지 주요 반쪽이 있습니다. 일반적으로 고강도 강철로 만들어집니다. 이러한 HPDC 다이캐스트 금형을 만드는 것을 고압 다이캐스팅 툴링이라고 합니다. HPDC 툴링은 최고의 금속 주조 품질을 위해 매우 중요합니다. 이젝터 핀 이젝터 핀은 고압 다이캐스팅 금형에서 또 다른 중요한 구성 요소입니다. 이젝터 핀은 다이에서 응고된 주물을 쉽게 제거할 수 있도록 도와줍니다. 이젝터 핀은 이동식 다이 하프에서 찾을 수 있습니다. 금속 주물이 냉각되고 응고되면 이 핀을 작동시켜 주물을 제거할 수 있습니다. 주로 생산 주기에서 중요한 역할을 합니다. 콜드 챔버 다이캐스팅 기계 콜드 챔버 다이캐스팅 기계는 사출 시스템, 프레스 시스템, 배출 시스템 등을 갖춘 가장 중요한 기계입니다. 모든 다이캐스팅 공정은이 콜드 챔버 다이캐스팅 기계에 의해 수행됩니다. 가열 부품 가열 부품에는 용광로와 발열체가 포함될 수 있습니다. 일반적으로 금속을 녹이지는 않지만 온도를 일정하게 유지합니다. 이 고압 다이캐스팅 기계 부품의 주요 목표는 금속이 액체 형태로 유지되도록 하는 것입니다. 일관된 가열은 최종 주물의 품질과 일관성을 위해 매우 중요합니다. 고압 다이캐스팅은 어떻게 작동합니까? 일반적으로 고압 다이캐스팅은 5단계로 진행됩니다. 각 단계는 주물의 최종 품질에 매우 중요합니다. 따라서 다이캐스팅 공정을 시작할 때는 항상 장치를 검사해야 합니다. 결함이나 느슨한 나사가 있는지 확인합니다. 항상 장치를 최적의 설정으로 조정하세요. 냉각 시스템이 제대로 작동하는지 확인합니다. 장치를 올바르게 점검했으면 1차 고압 다이캐스팅 공정을 진행할 수 있습니다. 항상 장갑, 옷, 안경과 같은 안전 장비를 착용하세요. 1단계 #1 다이캐스팅 금형 준비하기 고압 다이캐스팅 금형은 크게 두 가지 단계로 준비할 수 있습니다. 먼저, 이미 제작된 금형이라면 사용하기 전에 결함이나 오염 여부를 확인합니다. 둘째, 맞춤형 제품에는 금형 설계가 필요합니다. 다이캐스트 몰드 설계에는 여러 단계가 있습니다. 먼저 솔리드웍스, 오토캐드 등과 같은 3D 소프트웨어를 사용하여 디자인을 그릴 수 있습니다. 설계할 때 게이트 러너와 몰드 베이스를 적절하게 구성했는지 확인합니다. 냉각 시스템도 이 설계 프로세스에서 중요한 부분입니다. 마지막으로 환기 및 배출 시스템을 확인합니다. 설계가 완료되면 드래프트 분석을 진행합니다. 다양한 시뮬레이션 소프트웨어에서 기능을 확인할 수 있습니다. 테스트와 품질 검사가 끝나면 다이캐스팅 툴링을 최종 생산에 사용할 수 있습니다. 1단계 #2 용융 금속 주입 이 HPDC 주조 공정에서는 기계가 용융 금속을 다이 캐비티에 주입합니다. 다른 방법과 달리 고압 주조는 이 작업에 고압과 속도를 사용하기 때문에 고압 다이캐스팅이라고 불립니다. 먼저 다이캐스팅 몰드의 두 반쪽을 단단히 연결합니다. 그런 다음 버튼을 누르면 HPDC 기계가 용융 금속을 챔버로 밀어 넣습니다. 이 압력은 기술적으로 용융 금속이 전체 캐비티를 채우도록 보장합니다. 사출이 완료되면 용융 금속이 냉각되고 응고됩니다. HPDC 다이캐스팅 시스템에는 두 가지 주요 사출 방법이 사용됩니다. 프로젝트 요구 사항에 따라 작업에 적합한 방법을 선택할 수 있습니다. 핫 챔버 사출 사출 메커니즘이 용융 금속 저장소에 잠기는 것을 핫 챔버 사출이라고 합니다. 플런저가 움직이면 용융 금속을 챔버로 끌어들여 다이 캐비티에 주입합니다. 이 유형의 사출은 융점이 낮은 금속에 적합합니다. 이 핫 챔버 다이캐스팅 기계는 아연 및 마그네슘 합금을 사용하는 경우가 많습니다. 콜드 챔버 사출 반면에 콜드 챔버 사출은 별도의 용해로를 사용합니다. 수동 또는 자동 시스템을 사용하여 용융 금속을 부을 수 있습니다. 제조 시 자동 시스템은 일반적으로 유압 플런저로 작동합니다. 이 플런저는 용융 금속을 금형 캐비티에 강제로 삽입합니다. 콜드 챔버 사출은 알루미늄 HPDC 주조의 일반적인 기술입니다. #3 단계 냉각 및 응고 사출 후 용융 금속은 금형 캐비티 내에서 빠르게 냉각됩니다. 일부


